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Abstract

3D content generation is important for fields like gam-
ing and VR, requiring scalable methods that produce high-
fidelity assets with real-time rendering capabilities — mak-
ing 3D Gaussian splats a promising and efficient repre-
sentation. While text/image-to-3D has advanced across
various representations, native Gaussian splat generation
remains underexplored due to their discrete, unstructured
nature. To address this, we introduce GaussianTeller, a
novel framework that learns robust diffusion priors from
spatially-grouped Gaussians encoded into a structured la-
tent space. A latent diffusion model denoises noisy latent
codes conditioned on text or image inputs, while disentan-
gled geometry and appearance decoders reconstruct high-
fidelity Gaussian parameters. Qur native design enables
scalable, generalizable 3D generation and unlocks down-
stream tasks such as feed-forward Gaussian splat editing.

1. Introduction

3D content generation is becoming a core requirement in
fields such as game development, virtual reality, and digital
arts, where immersive and controllable 3D experiences are
increasingly in demand. Meeting the requirements calls for
scalable generation methods that produce high-fidelity 3D
assets with high-quality rendering capabilities.

Inspired by recent breakthroughs in text-to-image diffu-
sion models [3, 22], DreamFusion [18] pioneered to use
pretrained diffusion models to optimize 3D representations
via Score Distillation Sampling (SDS). Follow-up work im-
proved fidelity [10, 26] and accelerated optimization by
combining 3D Gaussian Splatting (3DGS) [7] with 2D dif-
fusion models [30]. However, SDS-based techniques suffer
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from slow per-scene optimization and geometric ambigui-
ties. Reconstruction-based methods [5] offer feed-forward
alternatives, enabling direct 3D generation from single-
view images. Nonetheless, these deterministic approaches
struggle to represent uncertainties intrinsic to single-view
3D reconstruction. To address this, recent works fine-tune
2D diffusion models for multi-view image generation [12],
extended further using video diffusion models [25]. Build-
ing on LRM, two-stage pipelines like Instant3D [9] syn-
thesizes multi-view, then reconstructs 3D representations.
Follow-up works improve geometry via differentiable mesh
extraction [28] or regress 3D Gaussians from pixels or fea-
tures [24]. More recent techniques [ 1 1] perform latent space
diffusion on encoded multi-view splatter images. However,
these solutions still fundamentally depend on multi-view in-
puts, lacking a true 3D latent space, limiting geometric pre-
cision.

Recent works have extended diffusion models to 3D rep-
resentations [13, 15, 20, 23]. Approaches like Gaussian-
Cube [32] and GVGEN [2] adapt diffusion to 3D Gaus-
sians via volumetric structures, but introduce costly prepro-
cessing and training. To improve scalability, latent diffu-
sion methods [4, 6, 29, 31] have been introduced. Specifi-
cally, L3DG [21] and DiffGS [33] apply latent diffusion to
3D Gaussians more efficiently, but remain category-specific
and struggle to generalize across diverse object types. De-
spite these advances, native 3D Gaussian generation re-
mains underexplored due to the inherent complexity of
modeling their unstructured and discrete nature.

To address the limitations of previous works, we in-
troduce GaussianTeller, a novel native 3D Gaussian splat
generation framework that directly learns robust 3D diffu-
sion priors from spatially-grouped Gaussians encoded into
a structured latent space. A Gaussian latent diffusion model
then learns denoising the noisy latent conditioned on text or
image. Geometry and color decoders, together with a cross-
branch feature sharing module, predict features conditioned
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Figure 1. We present GaussianTeller, a native 3D Gaussian splat generation framework that learns robust 3D diffusion priors from spatially-
grouped Gaussians encoded into a structured latent space. GaussianTeller enables effective generation of high-quality, 3D-consistent assets.

on spatial anchors, then reconstruct the Gaussian parame-
ters. This Gaussian group-structured latent representation
effectively manages the discrete nature of Gaussian splats
and ensures enhanced 3D consistency, while spatial anchor
conditioning aids 3D geometry recovery. Since the frame-
work directly operates on input Gaussians, it also enables
downstream tasks such as feed-forward 3DGS editing, un-
locking new possibilities for scalable and generalized 3D
generative modeling. In brief, our contributions include:

¢ A native 3D Gaussian splat generation framework, pro-
ducing high-quality, 3D consistent assets.

* An effective strategy for learning 3D diffusion priors
within a structured latent space, along with a disentan-
gled geometry and appearance prediction mechanism for
3DGS.

¢ To the best of our knowledge, we are the first to directly
operate on 3D Gaussian splats in a generalizable manner
beyond category-specific priors.

2. Method

We introduce GaussianTeller, a native 3D Gaussian splat
(3DGS) diffusion model that learns 3D priors directly from
Gaussian groups encoded into a latent space via a 3D Gaus-
sian VAE. The training pipeline is divided into two stages:
1. An encoder & maps the grouped input Gaussians G,
into a 3D latent z. Dual-decoders D, and Dcw, to-
gether with a cross-branch feature sharing module f,
first predict geometry and appearance features condi-
tioned on spatial anchors, then reconstruct the Gaus-
sian parameters to produce G'.
2. A Gaussian latent diffusion model d, learns denoising
the noisy latent z7 conditioned on embedding C.
Atinference, GaussianTeller generates high-quality, 3D-
consistent assets from text or image. To enhance general-
izability, it is trained on a mix of public datasets and cu-
rated samples. The scheme of the framework is illustrated

in Fig. 2.

2.1. Gaussian VAE for Group-structured Latent
Space Learning

The unstructured nature of 3DGS data hinders spatial struc-
ture recovery in native generation. GaussianTeller ad-
dresses this by grouping input Gaussians by spatial proxim-
ity and encoding them into a latent space that retains global
3D structure for effective diffusion prior learning.
Encoder. More formally, the input is a set of Gaussian
splats S = {S;}.,, where after stacking the attributes
we have S = [u,r,s,c,0] € RV>*1 with each splat pa-
rameterized by its centroid pu € RV*3, scale s € RV 3,
quaternion vector r € RV>*#, opacity o € RV*! and color
c € RV*3, representing a 3D asset. First S is randomly
downsampled to a fix number of splats $ € RY*14. We fol-
low the encoding strategy of GaussianMAE [14], and group
the Gaussians using their centroids, then compute group
centers p1y = FPS(u) € RP*3 via farthest point sampling,
where p denotes the number of groups. We refer pg as spa-
tial anchors. For each anchor, k neighboring splats are then
obtained as G = KNN(S, pg) € RP*#*14 The resulting
Gaussian groups G are then fed into a tokenizer to obtain
group tokens, T = Tokenizer(G), with T € R1024x1024
Finally, the group tokens are processed by the transformer-
based encoder &y introduced in [14]:

z=2E&(T) and z € RI024x1024 0

where z is the Gaussian group-structured latent representing
the 3D input.

Decoder. Another challenge in 3D Gaussian generation is
the joint learning of Gaussian parameters, which can ex-
hibit an uneven distribution, as pointed out by [14]. To pre-
dict these parameters from z, we employ a dual-decoder ar-
chitecture with a lightweight cross-branch feature sharing
module fy. The geometry decoder D, 6 predicts geome-
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Figure 2. Overview of our method. First stage: Given input Gaussians, our method first groups them based on spatial proximity and
encodes into a group-structured latent z. Decoders Dg¢ and Dcip predict geometry and appearance from spatial anchors to reconstruct
Gaussians G’. Second stage: A denoiser d, learns to denoise zr, guided by condition C.

try tokens T, for centroids, scales and rotation quaternions,
while the appearance decoder D, produces appearance to-
kens T, for color and opacity. The transformer-based de-
coders are conditioned on positional embeddings ¢ (ptg) de-
rived from spatial anchors pi4 to facilitate 3D structure re-
covery:

Ty = Dg¢(z, ¢(kg)), Tec=Decy(z,0(pg)) ()

These tokens are then passed to the cross-branch feature
sharing module fy to yield a fused token Ty = fy(Ty, T.),
which is then simply integrated into the original tokens via
a residual connection to enforce consistency between the
geometry and appearance branches:

Ty=Ty+Ts, T.=T.+T. 3)

Finally, a projection module ® predicts the Gaussian at-
tributes for the reconstructed groups G’,

wr' s =d(T,), c,o=3o(T,) 4)

Training. To capture 3D priors effectively, we supervise
the Gaussian VAE with an £; parameter reconstruction loss
computed between the input and reconstructed groups:

‘Cparam = ||G7G/||1 (5)

Due to the many-to-one mapping between the input 3D
Gaussian parameters and images they are trained from, an
L1 loss alone can be overly restrictive. Incorporating a ren-
derloss L, cnder relaxes this constraint and allows the model
to capture a broader range of valid solutions. The render
loss is computed over V' random views of the images from
which the input Gaussians are optimized, and is comple-
mented by an LPIPS loss.

=Lrgp+ BLLPIPS (6)

The Gaussian VAE is trained end-to-end with the following
objective:

£render

EGVAE = Alﬁparam+)\2£r6nder+)\3£loc+)\4£KL7 (7)

where Lp is the KL-divergence loss and L, is
the locality-preserving regularization loss that encourages
smooth color transitions within the Gaussian groups.

2.2. Gaussian Latent Diffusion

Our Gaussian VAE maps any 3DGS into a group-structured
latent preserving global 3D structure. To train a diffu-
sion model in this space, we employ the tranformer-based
text/image-conditioned denoiser of Shap-e [6], and its pre-
trained weights for initialization as Shap-e is trained on 3D
assets encoded into a latent space, and already carries rich
3d priors. Although the distribution learned by the Shap-e
denoiser differs from that of our Gaussian group-structured
latent space, this initialization provides a valuable starting
point for further adaptation.

Given Gaussian group-structured latent z € R1024x1024
encoded by & and a text/image condition C (obtained by
encoding image/text via CLIP [19]), the forward process
gradually adds Gaussian noise, corrupting z into zx over T’
time steps. The denoiser d,, is then tasked with recovering
the latent distribution from z. The training objective is:

]Ez,t,ewN(O,I) HdQ(ZtﬂCat) - Z)||2 s 3)

where ¢ denotes the time steps, and € is noise level sampled
from N (0, I). Classifier-free guidance is also employed.

2.3. 3D Asset Generation

Our method uses spatial anchors to condition the decoding
process and preserve the spatial structure of 3D assets. At
generation time, given a text or image condition, our frame-
work first produces a coarse point cloud using an off-the-
shelf model [16]. In practice, the point cloud can be any
user-provided input and is used solely to initialize the spa-
tial anchors pg by the procedure in Sec. 2.1. We then sam-
ple the latent z, and decode it, conditioned on the spatial
anchors, to generate the final 3D asset. To ensure gener-
alizability across both generated and user-provided point
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Figure 3. Qualitative comparison with state-of-the-art methods on text/image conditioned 3D generation. GaussianTeller produces
high-quality, 3D-consistent assets that align with the given conditioning input.

clouds, our framework is trained on the dataset described
in Sec. 2.4.

2.4. Dataset Assembly and Curation

To enable robust generalization in native 3D generation, we
merge two complementary datasets and curate a third for
training: 1) ShapeSplatsV1 [14] provides 52K 3DGS assets
from 55 categories with 72 views each. 2) OmniObject3D
[27] comprises 6K objects in 190 categories, with 100 ran-
dom views. Their 3DGS representations are produced by
LightGaussian [1]. 3) We curate 20K samples using LGM
[24]. Curated assets are rendered from multiple viewpoints.
DINOV2 [17] embeddings of rendered and dataset views
are compared via cosine similarity, discarding assets with
low similarity. A random view is selected from all available
views of a 3D asset for image conditioning.

3. Results

To evaluate text/image conditioned generation, an unseen
subset of our compiled dataset is employed. Our approach
is evaluated against three state-of-the-art open-source meth-
ods for text/image conditioned 3D generation [6, 8, 24].
Fig. 3 presents a visual comparison of GaussianTeller for
text/image conditioned 3D generation, while Fig. 1 shows
additional qualitative results. Our method yields supe-
rior alignment with the input text, whereas other methods

struggle to accurately follow the prompt and produce high-
quality geometry. For image-to-3D generation, [24] pro-
duces inconsistent results due to the ambiguity of single-
view reconstruction. Shap-E [6] shows misalignment with
the input image, and LN3Diff [8] exhibits artifacts such
as disconnected components and reduced geometric fi-
delity. In contrast, GaussianTeller generates high-quality,
3D-consistent outputs that closely align with the given im-
age condition.

4. Conclusion

We introduced a native 3DGS generation framework that
produces high-quality, 3D-consistent assets. By learning
diffusion priors within a structured latent space, our method
effectively models discrete Gaussians. Disentangling ge-
ometry prediction from appearance proves to improve con-
trol and accuracy in reconstructing complex 3D structures.
As a native approach trained directly on 3D splats, Gaus-
sianTeller opens new directions for downstream tasks such
as editing.
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